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Effect of Random Errors in Planar Near-Field 
Measurement 

ALLEN c. NEWELL, SENIOR MEMBER, IEEE, A N D  CARL F. STUBENRAUCH, SENIOR MFMBER,  IEEE 

A bstract-Expressions which relate the signal-to-noise ratio in the near 
field to the signal-to-noise ratio (WN) in the far field are developed. The 
expressions are then used to predict errors in far-field patterns obtained 
from near-field data. A technique to measure the noise in the far-field 
pattern is also given. 

I .  INTRODUCTION 

EAR-FIELD measurements have been employed for a N number of years to obtain far-field patterns for antennas 
from data acquired on a surface (plane, cylinder, or sphere). 
Of these techniques, the planar technique is perhaps the most 
fully developed. For this technique, a detailed analysis of 
errors due to receiver and the probe positioning mechanism 
has been performed [ l ] ,  [ 2 ] .  For most applications, these 
systematic errors are dominant in determining the overall 
accuracy of the resulting far-field measurement. Recent 
extensions of the near-field method to the measurement of 
low-sidelobe and other high-performance antennas and the 
required improvement of near-field measurement facilities 
have caused rethinking of the question of random errors. The 
purpose of this paper is to analyze the effect of random errors 
in the measurement of the amplitude and phase of the near 
field. These errors may arise from the digitization of the data 
and receiver noise. 

We first review the basic equations which describe the 
relation between the near fields and the far fields of the 
antenna under test (AUT). A model for random errors will 
then be developed from which estimates of the errors in the 
near field of the antenna are obtained. This model will include 
both Gaussian receiver noise and the effect of digitization 
which is uniformly distributed. We then apply the model to a 
case of an actual antenna and simulate the errors obtaining as a 
result the signal-to-noise ratio (S/N) in the calculated far field 
defined as the ratio of the maximum value of the far field to the 
noise power in the far field. Finally, we describe a method of 
measuring the noise which appears in the far field based on 
actual measurements and compare it to noise in the near field. 

11. BASIC RELATIONSHIPS FOR NEAR-FIELD ANTENNA 
MEASUREMENTS 

The theory of planar near-field measurements has been well 
developed elsewhere [3]. In this section, we will give only 
those relationships which will be used in the development of 
the error expressions. 
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In planar near-field scanning, the insertion loss between the 
probe antenna and the AUT is measured on a raster pattern at a 
spacing determined by the sampling theorem. The relation 
between the measured near field and the antenna pattern is 
given by the Fourier transform relationship, 

b,' (P)/ao= F' 1 t lo(K) . s&(K)ef?derK,P dk, dk, (1) 

where b,' is the complex wave amplitude emergent from the 
probe antenna, a. is the complex wave amplitude incident on 
the AUT, P = xe, + ye, is the transverse position of the 
probe antenna in the scan plane, and d is the separation 
between the probe antenna and the scan plane. K = k,e, + 
kyey is the transverse component of the propagation vector, y 
is the longitudinal component, t lo  is the transmitting character- 
istic of the AUT, si2 is the receiving characteristic of the 
probe, and F' is a mismatch factor. The transmitting and 
receiving characteristics of the AUT and probe are simply 
related to their far fields. 

The quantity tlo-si2 is often designated D(K) and is in fact a 
single component of the far field of the AUT if the probe is 
ideal, i.e., a probe which measures a single component of the 
electric field at a point. It is this quantity for which we will 
determine the errors. Inverting (1) gives the expression for 
D(K) in terms of the measured insertion loss, 

where we have let B(P) be the normalized probe output 
6,' (P)/bi (Po) and A is a normalizing constant given by ao/ 
b,' (Po). By virtue of the exponential, D(K) is for all practical 
purposes spatially band-limited, hence the sampling theorem 
may be applied to evaluate the integral in ( 2 )  without error 
using the following sum, 

where 6, and 6, are the near-field data point spacings in the x- 
and y-directions. This summation may be conveniently evalu- 
ated using the FFT algorithm. 

111. MODEL FOR ERRORS 

We briefly outline the analysis below. The error-free output 
of the probe may be expressed in terms of amplitude and phase 
by 

B(P) = a(P)ef$(P). (4) 
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The measurement of the amplitude a(P) and phase $(P) will 
introduce some errors which may be denoted by Aa(P) and 
A$(P). Thus the amplitude a,,, and phase $,,, indicated by the 
receiver will be 

am(P)=a(P)+Aa(P) $m(P)=$(P)+A$(P). 

The quantities Aa(P) and A$(P) represent the errors as they 
are most commonly given by the receiver manufacturers. The 
error in the measured data is E(P) which is given by 

E(P)= [a(P)+Aa(P)]ei($(P)+A$(P))-a(P)eiG(P) 

= [a(P)(eW(P) - 1 )  + Aa(P)eW(P)]ei$(P). ( 5 )  

We now expand the exponential phase factor and retain only 
terms which are second order or less, hence 

E(P) = [Aa(P) + ia(P)A$(P) 

+ iAa(P)A$(P) - a(P)A$2(P)/2]ei$(P). (6) 

The quantity of interest is the spectrum D(K) which is 
proportional to the far-field pattern in planar scanning given 
by (2). Because of the linearity of the Fourier transform, the 
spectrum of the error will be given by 

= C 1 [Aa(P) + ia(P)A$(P) + iAa(P)A$(P) 

- a(P) A$' (P)/2] ei[$(p) - K.Pl  dxdy . (7) 

We begin by considering the effect of the amplitude error term 
in (7). We combine the factors $(P) and K*P into a net phase 
factor @(K, P) and express the integral as a summation. Thus 
the amplitude error term (the first one) has the form 

AD,(K) = CSxSy [Aa(P) COS @(K, P) 

+iAa(P) sin @(K, P)]. (8) 

Now in the direction near the main beam, the factor @(K, P) is 
approximately constant. However, in the sidelobe region, the 
random amplitude error will be modulated by the sine and 
cosine factors. Therefore, the summation may be estimated by 

N N 

Aa;(P) COS @(K, P)I Aa;(P)rN(Ma+3~ma) (9) 
i= 1 i =  1 

where 

Mu mean of the distribution of Aa(P) cos @(K, P), 
U,,,, standard deviation of the mean, 
N total number of data points. 

The summation involving the sine term is similarly estimated. 
In the off-axis region, Mu = 0. Further, the standard 

deviation of the mean is related to the standard deviation U, of 
the amplitude error distribution by 

hence 

The on-axis value of the D(K) may be approximated with 
good accuracy by 

where A ,  is the effective area of the antenna, A ,  is the physical 
area of the antenna, and 1 is the aperture efficiency. The SIN 
in the far field may thus be expressed as 

Here, we have chosen to express the relationship in terms of 
Ne, the number of data points within the effective aperture of 
the antenna. The second form of the equation has been 
included for later comparison with the expression for the phase 
errors. 

The analysis for phase errors requires that two separate 
cases be considered depending on the region of interest in the 
far field. We first consider the case of the sidelobe region. 
Here the dominant term is the second one in (6), since the 
remaining two terms involving phase errors contain the 
product of two small terms. The error spectrum in the sidelobe 
region due to random phase errors is then 

AD$ (K) = ~ e-'yd 
4?r2F'A 

iat(P)A$(P)ei*(K,P) dxdy 

=iC&Sy [at(P;)A$(P;) COS @(K, Pi) 

+ ia,(Pi)A$(Pi) sin @(K, P,)]. (14) 

The amplitude factor a, is essentially zero outside the scan 
area. Further, because of the amplitude taper factor, the 
summation may be reduced to include only those points within 
the effective area of the antenna. The sum may thus be 
estimated in a similar fashion to (9) 

N 

a,(P)Arl.i(P) COS @(K, P) 
i =  I 

where M$ is the mean of the distribution of a,(P) A$(P) cos 
@(K, P) and U,,,+ is the standard deviation of the mean of a,(P) 
M P ) .  

Thus the phase error spectrum can be represented most 
simply by 



NEWELL A N D  STUBENRAUCH. E F F E C T  OF RANDOM ERRORS 77 1 

Finally, we get the SIN in the presence of phase errors only 

(17) 
DWO) - JN, I AD, I - 3 i z o , *  
-~ 

When both amplitude and phase errors are significant, the 
total error AD may be estimated as the root-mean-square of 
the individual errors ADa and AD, if the amplitude and phase 
errors are assumed independent. Thus the SIN in the off-axis 
region is given by the relation 

(18) 

We now consider the effect of phase errors on the pattern 
within the region of the main beam. In this region, the phase 
factor @ is approximately constant. Now a constant phase may 
be added to the overall phase @ such that the phase error term 
a,A$ has an average value of zero. Under this condition, the 
second term in (6) no longer contributes. The remaining terms 
are of second order. Of these two, the fourth term will 
dominate since it is always positive, while the third term will 
have an average close to zero for the same reason as the 
second. Yaghjian's analysis [ 11 for systematic instrumentation 
phase errors is equally valid for random errors. Since our 
major interest is in the sidelobe region we only quote his result 
here [ l ,  eq. 821: 

where we have estimated A$,,, by 3a,. 

IV. EXPERIMENTAL VERIFICATION 

To verify the theory outlined above, several tests were 
performed on actual near-field data acquired at the National 
Bureau of Standards (NBS). Parameters of the antenna and 
near-field data are as follows: 

reflector antenna diameter 1.2 m 
aperture efficiency 0.5 
frequency 8.4 GHz 
x and y near-field point spacing 2 cm 
128 data points in x and y .  

Patterns were computed with unperturbed amplitude and 
phase data and then recomputed with data which had been 
contaminated by a variety of techniques. For this study, the 
unperturbed data were considered to be without error. In order 
to simulate the effect of digitization, the data were rounded to 
the one-percent level in amplitude and/or to the nearest 1 in 
phase. This corresponds to a random variable which is 
uniformly distributed between ? 112 percent or f 1/2". (The 
standard deviation of a uniformly distributed random variable 
is given by U = w/fiwhere w is the half-width of the 
distribution.) Next a uniformly distributed random variable 
having the same standard deviation as the rounded data was 
added to the amplitude and phase data. Finally, to simulate the 

effect of receiver noise, a normally distributed random 
variable with the same standard deviation as the rounded data 
was added to the amplitude and phase. In each case the 
difference between the far-field patterns computed with 
unperturbed and the corrupted near-field data was calculated 
and plotted. The peak value of this difference pattern then 
represents the SIN in the computed results. This value was 
then compared to the S/N predicted by the theory. 

The cases studied are summarized below: 

case 1 

case 2 
case 3 
case 4 

case 5 

near-field data rounded to the nearest one percent 
in amplitude; 
near-field data rounded to the nearest 1 ' in phase; 
combination of cases 1 and 2; 
amplitude and phase error uniformly distributed 
between f 1 /2 percent and -t 1 /2' ; 
amplitude and phase error normally distributed 
with the same standard deviation as cases 3 and 4. 

Patterns showing the difference between the corrupted and 
uncorrupted near-field data for case 3 are shown in Fig. 1. 
Fig. 2 shows the difference between the far-field patterns 
calculated from the data of Fig. 1 .  (Other cases are very 
similar.) The results are summarized in Table I. The results 
for cases 3-5 will probably yield similar results since the 
standard deviations are identical. The results shown indicate 
that the techniques developed for estimating the worst-case 
far-field SIN are useful for estimating the effects of roundoff 
and random noise. 

It is possible to make a direct measurement of the SIN in the 
far-field pattern computed from near-field data using the band- 
limited nature of the spectrum D (  K ) .  The technique may most 
easily be applied using one-dimensional scans. An oversam- 
pled set of data is acquired using a spacing much smaller than 
h/2. A one-dimensional Fourier transform is then performed. 
The values of the spectrum calculated for k , / k  greater than 
one represent results for the evanescent region. The actual 
antenna spectrum in the evanescent region has been attenuated 
to such a low value that it could not possibly be measured; for 
example, for k,/k = 1.1 and d = 6X, the attenuation from the 
exponential factor is 150 dB. The calculated spectrum for k,/ 
k > 1 is therefore due to errors in the measurements, and for 
large k, values, random errors will predominate. From this 
direct measurement of the SIN in the one-dimensional spec- 
trum, the corresponding SIN in the two-dimensional data may 
be inferred. For instance, let the one-dimensional measure- 
ment be taken in the x direction over a length r.,' with data 
point spacing 6;. The corresponding two-dimensional data 
will involve data point spacings 6, and 6, and scan lengths I ,  
and I,. The SIN for the two-dimensional measurement will 
then be 

Fig. 3 illustrates data taken on an ultra-low sidelobe array 
antenna at a z distance of 6h with a point spacing of 0.07h. 
The observed SIN is approximately 71 dB and corresponds to 
the level of 76 dB calculated using the theory discussed above. 
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TABLE I 
FAR FIELD SIN DUE TO RANDOM ERRORS IN NEAR-FIELD DATA 

-~ - ~ 

SIN (dB) SIN (dB) 
Case 0 0  q ( r a d )  (Calculated) (Observed) 

1 0 0029 0 59 2 61 0 
2 0 0 0050 65 9 71 0 
3 00029 0 0 0 5 0  58 1 60 0 
4 00029 0 0050 58 1 62 5 
5 00029 0 0 0 5 0  58 1 62 0 

~~ 

~~ ~~ 

Near-Field X-Position - cm 

Fig. 1. Plot of difference between uncorrupted near-field data and near- 
field data which was rounded to nearest one percent in amplitude and 1 ' in 
phase. Note approximately 5-dB increase in amplitude of pattern in vicinity 
of aperture of antenna. This corresponds to weighting of phase error by 
aperture taper factor 

-60 -48 -36 -24 -12 0 12 24 36 48 60 
Elevation Angle - degrees 

Fig. 2. Plot of difference between far-field pattern computed from uncor- 
rupted near-field data and near-field data which was rounded to nearest one 
percent in amplitude and 1 in phase. Antenna diameter: 1.2 m; frequency: 
4.0 GHz. 

V. CONCLUSION 
Random errors in antenna patterns computed from near- 

field data may be significant if accurate results are needed in 
regions where pattern amplitudes are very low. In this paper 
we have shown how the effect of random errors may be 
estimated from the scan parameters and the noise level of the 
receiving equipment. 

Fig. 3.  Spectrum calculated into evanescent region (k,/k > 1) using 
oversampled set of near-field data taken on low-sidelobe antenna. Values 
calculated in evanescent region correspond to noise rather than actual 
spectral values. Prominent sidelobes which occur at k,/k = - 1.1, - 2.0, 
0.75, 1.65 are artifacts of measurement system, result of multiple 
reflections. 

We have shown that the effect on SIN from random 
amplitude errors is proportional to the number of points in the 
effective area of the antenna, but inversely proportional to the 
square root of the total number of data points. Qualitatively, 
this may be understood by observing that random errors in the 
low-amplitude regions of the near field will add to degrade the 
overall S/N while increasing the number of points taken in the 
effective area region will tend to average out errors. 

Phase errors, on the other hand, have an effect only in the 
region where the near-field amplitude is high and are 
proportional to the square root of the number of data points 
taken in that area. In the main beam region, phase errors are 
proportional to the square of the phase error while the effect on 
the sidelobes is proportional to the first power of the phase 
error. 

Various random errors were simulated by corrupting near- 
field data and the resulting far-field patterns computed. 
Comparison between the simulation and the errors estimated 
by the appropriate formulas showed that the predicted error 
levels were within a few dB of the simulation. On the basis of 
this work we conclude that the formulas presented here do 
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indeed provide a useful way of determining the effect of 
random near-field errors. 

field pattern by calculating the spectrum in the evanescent 
region from a single-dimensional oversampled scan has also 
been demonstrated with good results. 
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